Package index
-
multinma-packagemultinma - multinma: A Package for Network Meta-Analysis of Individual and Aggregate Data in Stan
-
set_agd_arm() - Set up arm-based aggregate data
-
set_agd_contrast() - Set up contrast-based aggregate data
-
set_agd_surv() - Set up aggregate survival data
-
set_ipd() - Set up individual patient data
-
combine_network() - Combine multiple data sources into one network
-
multi() - Multinomial outcome data
-
print(<nma_data>)print(<mlnmr_data>) - Print
nma_dataobjects
-
plot(<nma_data>) - Network plots
-
as.igraph(<nma_data>)as_tbl_graph(<nma_data>) - Convert networks to graph objects
-
nma_data-classnma_datamlnmr_datamlnmr_data-class - The nma_data class
-
is_network_connected() - Check network connectedness
Setting up numerical integration (ML-NMR only)
Multilevel network meta-regression models require numerical integration points to be specified for the distributions of covariates in each aggregate data study in the network.
-
add_integration()unnest_integration() - Add numerical integration points to aggregate data
-
distr() - Specify a general marginal distribution
-
dlogitnorm()plogitnorm()qlogitnorm() - The logit Normal distribution
-
normal()half_normal()log_normal()cauchy()half_cauchy()student_t()half_student_t()log_student_t()exponential()flat() - Prior distributions
-
summary(<nma_prior>) - Summary of prior distributions
-
nma_prior-classnma_prior - The nma_prior class
-
plot_prior_posterior() - Plot prior vs posterior distribution
Model fitting
Model specification and fitting is accomplished using the nma() function.
-
nma() - Network meta-analysis models
-
print(<stan_nma>) - Print
stan_nmaobjects
-
summary(<stan_nma>)plot(<stan_nma>) - Posterior summaries from
stan_nmaobjects
-
pairs(<stan_nma>) - Matrix of plots for a
stan_nmaobject
-
stan_nma-classstan_nmastan_mlnmr - The stan_nma class
-
adapt_delta - Target average acceptance probability
-
RE_cor()which_RE() - Random effects structure
-
.default().is_default() - Set default values
-
plot_prior_posterior() - Plot prior vs posterior distribution
-
plot_integration_error() - Plot numerical integration error
-
dic() - Deviance Information Criterion (DIC)
-
print(<nma_dic>)as.data.frame(<nma_dic>)as.tibble(<nma_dic>)as_tibble(<nma_dic>)as.array(<nma_dic>)as.matrix(<nma_dic>) - Methods for
nma_dicobjects
-
plot(<nma_dic>) - Plots of model fit diagnostics
-
nma_dic-classnma_dic - The nma_dic class
-
loo(<stan_nma>)waic(<stan_nma>) - Model comparison using the
loopackage
-
get_nodesplits()has_direct()has_indirect() - Direct and indirect evidence
-
nma_nodesplit-classnma_nodesplitnma_nodesplit_dfnma_nodesplit_df-class - The nma_nodesplit class
-
print(<nma_nodesplit_df>)print(<nma_nodesplit>) - Print
nma_nodesplit_dfobjects
-
summary(<nma_nodesplit_df>)summary(<nma_nodesplit>)plot(<nma_nodesplit>)plot(<nma_nodesplit_df>) - Summarise the results of node-splitting models
-
nodesplit_summary-classnodesplit_summary - The
nodesplit_summaryclass
-
print(<nodesplit_summary>)as_tibble(<nodesplit_summary>)as.tibble.nodesplit_summary()as.data.frame(<nodesplit_summary>) - Methods for
nodesplit_summaryobjects
-
plot(<nodesplit_summary>) - Plots of node-splitting models
Posterior summaries and working with fitted models
Producing and plotting relative effects, absolute predictions, marginal effects, posterior ranks and rank probabilities. Converting to MCMC arrays and matrices.
-
relative_effects() - Relative treatment effects
-
marginal_effects() - Marginal treatment effects
-
predict(<stan_nma>)predict(<stan_nma_surv>) - Predictions of absolute effects from NMA models
-
posterior_ranks()posterior_rank_probs() - Treatment rankings and rank probabilities
-
print(<nma_summary>)as.data.frame(<nma_summary>)as.tibble(<nma_summary>)as_tibble(<nma_summary>)as.array(<nma_summary>)as.matrix(<nma_summary>)as.array(<nma_rank_probs>)as.matrix(<nma_rank_probs>) - Methods for
nma_summaryobjects
-
plot(<nma_summary>)plot(<nma_parameter_summary>)plot(<nma_rank_probs>)plot(<surv_nma_summary>) - Plots of summary results
-
nma_summary-classnma_summarynma_rank_probs - The
nma_summaryclass
-
as.array(<stan_nma>)as.data.frame(<stan_nma>)as_tibble(<stan_nma>)as.tibble(<stan_nma>)as.matrix(<stan_nma>) - Convert samples into arrays, matrices, or data frames
-
summary(<mcmc_array>)print(<mcmc_array>)plot(<mcmc_array>)names(<mcmc_array>)`names<-`(<mcmc_array>) - Working with 3D MCMC arrays
-
as.stanfit() - as.stanfit
-
dmspline()pmspline()qmspline()hmspline()Hmspline()rmst_mspline() - Distribution functions for M-spline baseline hazards
-
make_knots() - Knot locations for M-spline baseline hazard models
-
softmax()inv_softmax() - Softmax transform
-
theme_multinma() - Plot theme for multinma plots
-
geom_km() - Kaplan-Meier curves of survival data
-
atrial_fibrillation - Stroke prevention in atrial fibrillation patients
-
bcg_vaccine - BCG vaccination
-
blocker - Beta blockers to prevent mortality after MI
-
diabetes - Incidence of diabetes in trials of antihypertensive drugs
-
dietary_fat - Reduced dietary fat to prevent mortality
-
hta_psoriasis - HTA Plaque Psoriasis
-
ndmm_ipdndmm_agdndmm_agd_covs - Newly diagnosed multiple myeloma
-
parkinsons - Mean off-time reduction in Parkison's disease
-
plaque_psoriasis_ipdplaque_psoriasis_agd - Plaque psoriasis data
-
smoking - Smoking cessation data
-
social_anxiety - Social Anxiety
-
statins - Statins for cholesterol lowering
-
thrombolytics - Thrombolytic treatments data
-
transfusion - Granulocyte transfusion in patients with neutropenia or neutrophil dysfunction
-
example_ndmm - Example newly-diagnosed multiple myeloma
-
example_pso_mlnmr - Example plaque psoriasis ML-NMR
-
example_smk_fe - Example smoking FE NMA
-
example_smk_nodesplit - Example smoking node-splitting
-
example_smk_re - Example smoking RE NMA
-
example_smk_ume - Example smoking UME NMA