Set up a network containing aggregate survival data (AgD) in the form of
event/censoring times (e.g. reconstructed from digitized Kaplan-Meier curves)
and covariate summary statistics from each study. Multiple data sources may be
combined once created using combine_network()
.
Arguments
- data
a data frame
- study
column of
data
specifying the studies, coded using integers, strings, or factors- trt
column of
data
specifying treatments, coded using integers, strings, or factors- Surv
column of
data
specifying a survival or time-to-event outcome, using theSurv()
function. Right/left/interval censoring and left truncation (delayed entry) are supported.- covariates
data frame of covariate summary statistics for each study or study arm, with corresponding
study
andtrt
columns to match to those indata
- trt_ref
reference treatment for the network, as a single integer, string, or factor. If not specified, a reasonable well-connected default will be chosen (see details).
- trt_class
column of
data
specifying treatment classes, coded using integers, strings, or factors. By default, no classes are specified.
Value
An object of class nma_data
Details
By default, trt_ref = NULL
and a network reference treatment will be chosen
that attempts to maximise computational efficiency and stability. If an
alternative reference treatment is chosen and the model runs slowly or has
low effective sample size (ESS) this may be the cause - try letting the
default reference treatment be used instead. Regardless of which treatment is
used as the network reference at the model fitting stage, results can be
transformed afterwards: see the trt_ref
argument of
relative_effects()
and predict.stan_nma()
.
All arguments specifying columns of data
accept the following:
A column name as a character string, e.g.
study = "studyc"
A bare column name, e.g.
study = studyc
dplyr::mutate()
style semantics for inline variable transformations, e.g.study = paste(author, year)
See also
set_ipd()
for individual patient data, set_agd_contrast()
for
contrast-based aggregate data, and combine_network()
for combining
several data sources in one network.
print.nma_data()
for the print method displaying details of the
network, and plot.nma_data()
for network plots.
Examples
## Newly diagnosed multiple myeloma
head(ndmm_agd) # Reconstructed Kaplan-Meier data
#> study studyf trt trtf eventtime status
#> 1 Morgan2012 Morgan2012 Pbo Pbo 18.72575 1
#> 2 Morgan2012 Morgan2012 Pbo Pbo 63.36000 0
#> 3 Morgan2012 Morgan2012 Pbo Pbo 34.35726 1
#> 4 Morgan2012 Morgan2012 Pbo Pbo 10.77826 1
#> 5 Morgan2012 Morgan2012 Pbo Pbo 63.36000 0
#> 6 Morgan2012 Morgan2012 Pbo Pbo 14.52966 1
ndmm_agd_covs # Summary covariate information on each arm
#> study studyf trt trtf sample_size age_min age_iqr_l age_median
#> 1 Jackson2019 Jackson2019 Len Len 1137 17.28246 59.13164 65.76766
#> 2 Jackson2019 Jackson2019 Pbo Pbo 864 21.18572 58.30991 65.47402
#> 3 Morgan2012 Morgan2012 Pbo Pbo 410 33.88979 58.05696 64.15999
#> 4 Morgan2012 Morgan2012 Thal Thal 408 38.45127 59.30022 65.48736
#> age_iqr_h age_max age_mean age_sd iss_stage3 response_cr_vgpr male
#> 1 72.00756 85.76095 65.16867 8.936962 0.2480211 0.8258575 0.6165347
#> 2 71.80261 86.23080 64.62894 9.399272 0.1921296 0.8310185 0.6215278
#> 3 70.44791 84.79372 63.92360 9.006311 0.3634146 0.7170732 0.6195122
#> 4 71.73597 84.69365 65.59387 8.384686 0.3186275 0.7450980 0.6151961
set_agd_surv(ndmm_agd,
study = studyf,
trt = trtf,
Surv = Surv(eventtime, status),
covariates = ndmm_agd_covs)
#> A network with 2 AgD studies (arm-based).
#>
#> ------------------------------------------------------- AgD studies (arm-based) ----
#> Study Treatment arms
#> Jackson2019 2: Pbo | Len
#> Morgan2012 2: Pbo | Thal
#>
#> Outcome type: survival
#> ------------------------------------------------------------------------------------
#> Total number of treatments: 3
#> Total number of studies: 2
#> Reference treatment is: Pbo
#> Network is connected