Skip to contents

Posterior summaries of node-splitting models (nma_nodesplit and nma_nodesplit_df objects) can be produced using the summary() method, and plotted using the plot() method.

Usage

# S3 method for class 'nma_nodesplit_df'
summary(
  object,
  consistency = NULL,
  ...,
  probs = c(0.025, 0.25, 0.5, 0.75, 0.975)
)

# S3 method for class 'nma_nodesplit'
summary(
  object,
  consistency = NULL,
  ...,
  probs = c(0.025, 0.25, 0.5, 0.75, 0.975)
)

# S3 method for class 'nma_nodesplit'
plot(x, consistency = NULL, ...)

# S3 method for class 'nma_nodesplit_df'
plot(x, consistency = NULL, ...)

Arguments

consistency

Optional, a stan_nma object for the corresponding fitted consistency model, to display the network estimates alongside the direct and indirect estimates. The fitted consistency model present in the nma_nodesplit_df object will be used if this is present (see get_nodesplits()).

...

Additional arguments passed on to other methods

probs

Numeric vector of specifying quantiles of interest, default c(0.025, 0.25, 0.5, 0.75, 0.975)

x, object

A nma_nodesplit or nma_nodesplit_df object

Value

A nodesplit_summary object

Details

The plot() method is a shortcut for plot(summary(nma_nodesplit)). For details of plotting options, see plot.nodesplit_summary().

Examples

# \donttest{
# Run smoking node-splitting example if not already available
if (!exists("smk_fit_RE_nodesplit")) example("example_smk_nodesplit", run.donttest = TRUE)
# }
# \donttest{
# Summarise the node-splitting results
summary(smk_fit_RE_nodesplit)
#> Node-splitting models fitted for 6 comparisons.
#> 
#> ------------------------------ Node-split Group counselling vs. No intervention ---- 
#> 
#>                  mean   sd  2.5%   25%   50%  75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net            1.11 0.44  0.30  0.82  1.10 1.38  2.00     2000     2306    1
#> d_dir            1.08 0.74 -0.31  0.58  1.05 1.55  2.58     3392     2712    1
#> d_ind            1.12 0.55  0.07  0.77  1.12 1.48  2.17     1637     2163    1
#> omega           -0.05 0.90 -1.79 -0.65 -0.07 0.53  1.83     2205     2310    1
#> tau              0.87 0.20  0.55  0.73  0.85 0.99  1.34     1171     1658    1
#> tau_consistency  0.84 0.19  0.55  0.71  0.82 0.95  1.29     1314     1713    1
#> 
#> Residual deviance: 53.6 (on 50 data points)
#>                pD: 43.8
#>               DIC: 97.4
#> 
#> Bayesian p-value: 0.94
#> 
#> ------------------------- Node-split Individual counselling vs. No intervention ---- 
#> 
#>                 mean   sd  2.5%   25%  50%  75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net           0.84 0.24  0.38  0.69 0.84 1.00  1.32     1237     1718    1
#> d_dir           0.88 0.26  0.39  0.70 0.87 1.04  1.40     1371     1797    1
#> d_ind           0.56 0.69 -0.78  0.09 0.55 0.99  1.95     1345     1649    1
#> omega           0.31 0.71 -1.09 -0.14 0.33 0.78  1.74     1411     1773    1
#> tau             0.87 0.20  0.55  0.72 0.84 0.98  1.33     1143     2092    1
#> tau_consistency 0.84 0.19  0.55  0.71 0.82 0.95  1.29     1314     1713    1
#> 
#> Residual deviance: 54.1 (on 50 data points)
#>                pD: 44.3
#>               DIC: 98.4
#> 
#> Bayesian p-value: 0.64
#> 
#> -------------------------------------- Node-split Self-help vs. No intervention ---- 
#> 
#>                  mean   sd  2.5%   25%   50%  75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net            0.51 0.40 -0.26  0.25  0.50 0.75  1.30     2087     2276 1.00
#> d_dir            0.33 0.54 -0.76 -0.01  0.32 0.66  1.43     3295     2569 1.00
#> d_ind            0.71 0.62 -0.52  0.30  0.72 1.12  1.94     2329     2835 1.00
#> omega           -0.38 0.82 -1.94 -0.92 -0.39 0.15  1.27     2479     2626 1.00
#> tau              0.88 0.20  0.57  0.74  0.85 0.99  1.33     1114     1538 1.01
#> tau_consistency  0.84 0.19  0.55  0.71  0.82 0.95  1.29     1314     1713 1.00
#> 
#> Residual deviance: 53.7 (on 50 data points)
#>                pD: 44.2
#>               DIC: 98
#> 
#> Bayesian p-value: 0.62
#> 
#> ----------------------- Node-split Individual counselling vs. Group counselling ---- 
#> 
#>                  mean   sd  2.5%   25%   50%   75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net           -0.26 0.41 -1.09 -0.53 -0.26  0.01  0.54     2760     2738    1
#> d_dir           -0.10 0.50 -1.09 -0.44 -0.10  0.23  0.87     3180     3177    1
#> d_ind           -0.55 0.61 -1.78 -0.95 -0.55 -0.15  0.64     1707     2182    1
#> omega            0.45 0.68 -0.89  0.00  0.45  0.89  1.80     1631     1984    1
#> tau              0.87 0.20  0.57  0.73  0.84  0.98  1.33     1275     1693    1
#> tau_consistency  0.84 0.19  0.55  0.71  0.82  0.95  1.29     1314     1713    1
#> 
#> Residual deviance: 53.4 (on 50 data points)
#>                pD: 43.9
#>               DIC: 97.3
#> 
#> Bayesian p-value: 0.5
#> 
#> ------------------------------------ Node-split Self-help vs. Group counselling ---- 
#> 
#>                  mean   sd  2.5%   25%   50%   75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net           -0.60 0.48 -1.57 -0.90 -0.60 -0.28  0.30     2989     2245    1
#> d_dir           -0.60 0.65 -1.90 -1.02 -0.60 -0.18  0.72     3690     3112    1
#> d_ind           -0.63 0.66 -1.92 -1.07 -0.64 -0.20  0.67     1966     2537    1
#> omega            0.02 0.87 -1.66 -0.54  0.02  0.58  1.72     1983     1936    1
#> tau              0.87 0.20  0.56  0.73  0.84  0.98  1.32     1077     1882    1
#> tau_consistency  0.84 0.19  0.55  0.71  0.82  0.95  1.29     1314     1713    1
#> 
#> Residual deviance: 54.1 (on 50 data points)
#>                pD: 44.3
#>               DIC: 98.5
#> 
#> Bayesian p-value: 0.97
#> 
#> ------------------------------- Node-split Self-help vs. Individual counselling ---- 
#> 
#>                  mean   sd  2.5%   25%   50%   75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net           -0.34 0.40 -1.11 -0.60 -0.33 -0.08  0.48     2355     2418    1
#> d_dir            0.05 0.64 -1.24 -0.37  0.05  0.46  1.33     3370     2887    1
#> d_ind           -0.64 0.53 -1.70 -0.98 -0.63 -0.29  0.37     1939     2329    1
#> omega            0.70 0.81 -0.83  0.15  0.68  1.21  2.33     2371     2334    1
#> tau              0.86 0.20  0.56  0.72  0.83  0.96  1.33     1182     1691    1
#> tau_consistency  0.84 0.19  0.55  0.71  0.82  0.95  1.29     1314     1713    1
#> 
#> Residual deviance: 53.6 (on 50 data points)
#>                pD: 44
#>               DIC: 97.6
#> 
#> Bayesian p-value: 0.38

# Plot the node-splitting results
plot(smk_fit_RE_nodesplit)

# }