Skip to contents

Posterior summaries of node-splitting models (nma_nodesplit and nma_nodesplit_df objects) can be produced using the summary() method, and plotted using the plot() method.

Usage

# S3 method for class 'nma_nodesplit_df'
summary(
  object,
  consistency = NULL,
  ...,
  probs = c(0.025, 0.25, 0.5, 0.75, 0.975)
)

# S3 method for class 'nma_nodesplit'
summary(
  object,
  consistency = NULL,
  ...,
  probs = c(0.025, 0.25, 0.5, 0.75, 0.975)
)

# S3 method for class 'nma_nodesplit'
plot(x, consistency = NULL, ...)

# S3 method for class 'nma_nodesplit_df'
plot(x, consistency = NULL, ...)

Arguments

consistency

Optional, a stan_nma object for the corresponding fitted consistency model, to display the network estimates alongside the direct and indirect estimates. The fitted consistency model present in the nma_nodesplit_df object will be used if this is present (see get_nodesplits()).

...

Additional arguments passed on to other methods

probs

Numeric vector of specifying quantiles of interest, default c(0.025, 0.25, 0.5, 0.75, 0.975)

x, object

A nma_nodesplit or nma_nodesplit_df object

Value

A nodesplit_summary object

Details

The plot() method is a shortcut for plot(summary(nma_nodesplit)). For details of plotting options, see plot.nodesplit_summary().

Examples

# \donttest{
# Run smoking node-splitting example if not already available
if (!exists("smk_fit_RE_nodesplit")) example("example_smk_nodesplit", run.donttest = TRUE)
# }
# \donttest{
# Summarise the node-splitting results
summary(smk_fit_RE_nodesplit)
#> Node-splitting models fitted for 6 comparisons.
#> 
#> ------------------------------ Node-split Group counselling vs. No intervention ---- 
#> 
#>                  mean   sd  2.5%   25%   50%  75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net            1.11 0.44  0.26  0.83  1.10 1.39  1.99     1927     2107    1
#> d_dir            1.05 0.73 -0.36  0.57  1.03 1.50  2.56     3785     3043    1
#> d_ind            1.15 0.54  0.10  0.80  1.14 1.51  2.27     1895     2285    1
#> omega           -0.11 0.88 -1.89 -0.69 -0.10 0.46  1.66     2666     2760    1
#> tau              0.86 0.20  0.55  0.72  0.83 0.97  1.35     1430     2206    1
#> tau_consistency  0.84 0.18  0.55  0.71  0.81 0.94  1.27     1610     2124    1
#> 
#> Residual deviance: 54.4 (on 50 data points)
#>                pD: 44.5
#>               DIC: 99
#> 
#> Bayesian p-value: 0.9
#> 
#> ------------------------- Node-split Individual counselling vs. No intervention ---- 
#> 
#>                 mean   sd  2.5%   25%  50%  75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net           0.85 0.24  0.41  0.69 0.84 1.00  1.35     1085     1736 1.01
#> d_dir           0.89 0.26  0.41  0.71 0.87 1.05  1.42     1615     2324 1.00
#> d_ind           0.58 0.67 -0.73  0.14 0.58 1.00  1.92     1805     1953 1.00
#> omega           0.31 0.70 -1.08 -0.15 0.30 0.75  1.73     1846     2206 1.00
#> tau             0.86 0.19  0.55  0.73 0.84 0.96  1.29     1516     2327 1.00
#> tau_consistency 0.84 0.18  0.55  0.71 0.81 0.94  1.27     1610     2124 1.00
#> 
#> Residual deviance: 54.3 (on 50 data points)
#>                pD: 44.3
#>               DIC: 98.6
#> 
#> Bayesian p-value: 0.66
#> 
#> -------------------------------------- Node-split Self-help vs. No intervention ---- 
#> 
#>                  mean   sd  2.5%   25%   50%  75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net            0.50 0.41 -0.28  0.24  0.51 0.77  1.31     2020     2280    1
#> d_dir            0.34 0.54 -0.74  0.00  0.34 0.69  1.41     3322     2728    1
#> d_ind            0.70 0.62 -0.49  0.28  0.68 1.10  1.96     1835     2357    1
#> omega           -0.36 0.82 -2.02 -0.89 -0.34 0.18  1.21     2099     2545    1
#> tau              0.87 0.20  0.55  0.73  0.84 0.98  1.31     1085     1943    1
#> tau_consistency  0.84 0.18  0.55  0.71  0.81 0.94  1.27     1610     2124    1
#> 
#> Residual deviance: 53.7 (on 50 data points)
#>                pD: 44.2
#>               DIC: 97.9
#> 
#> Bayesian p-value: 0.67
#> 
#> ----------------------- Node-split Individual counselling vs. Group counselling ---- 
#> 
#>                  mean   sd  2.5%   25%   50%   75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net           -0.26 0.41 -1.08 -0.52 -0.25  0.01  0.52     2847     2606    1
#> d_dir           -0.11 0.48 -1.11 -0.41 -0.11  0.21  0.80     4340     2898    1
#> d_ind           -0.55 0.63 -1.82 -0.96 -0.54 -0.14  0.63     1558     2069    1
#> omega            0.44 0.70 -0.96 -0.01  0.45  0.87  1.82     1607     1789    1
#> tau              0.87 0.19  0.56  0.73  0.84  0.97  1.33     1225     1989    1
#> tau_consistency  0.84 0.18  0.55  0.71  0.81  0.94  1.27     1610     2124    1
#> 
#> Residual deviance: 53.8 (on 50 data points)
#>                pD: 44.1
#>               DIC: 97.8
#> 
#> Bayesian p-value: 0.51
#> 
#> ------------------------------------ Node-split Self-help vs. Group counselling ---- 
#> 
#>                  mean   sd  2.5%   25%   50%   75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net           -0.61 0.49 -1.61 -0.91 -0.60 -0.30  0.33     3000     2761    1
#> d_dir           -0.61 0.66 -1.90 -1.04 -0.62 -0.20  0.75     3872     2823    1
#> d_ind           -0.61 0.67 -1.96 -1.04 -0.60 -0.18  0.76     2028     2389    1
#> omega           -0.01 0.89 -1.69 -0.59 -0.02  0.53  1.92     2125     2557    1
#> tau              0.87 0.20  0.56  0.73  0.85  0.98  1.33     1184     1964    1
#> tau_consistency  0.84 0.18  0.55  0.71  0.81  0.94  1.27     1610     2124    1
#> 
#> Residual deviance: 54.1 (on 50 data points)
#>                pD: 44.2
#>               DIC: 98.3
#> 
#> Bayesian p-value: 0.99
#> 
#> ------------------------------- Node-split Self-help vs. Individual counselling ---- 
#> 
#>                  mean   sd  2.5%   25%   50%   75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net           -0.35 0.42 -1.20 -0.62 -0.34 -0.07  0.47     2437     2317    1
#> d_dir            0.06 0.64 -1.20 -0.36  0.07  0.48  1.33     2697     2632    1
#> d_ind           -0.57 0.51 -1.57 -0.90 -0.57 -0.25  0.47     1886     2498    1
#> omega            0.63 0.80 -0.99  0.11  0.64  1.15  2.16     1929     2112    1
#> tau              0.85 0.19  0.55  0.72  0.83  0.96  1.29     1168     1591    1
#> tau_consistency  0.84 0.18  0.55  0.71  0.81  0.94  1.27     1610     2124    1
#> 
#> Residual deviance: 53.8 (on 50 data points)
#>                pD: 44.1
#>               DIC: 98
#> 
#> Bayesian p-value: 0.41

# Plot the node-splitting results
plot(smk_fit_RE_nodesplit)

# }