Skip to contents

Posterior summaries of node-splitting models (nma_nodesplit and nma_nodesplit_df objects) can be produced using the summary() method, and plotted using the plot() method.

Usage

# S3 method for class 'nma_nodesplit_df'
summary(
  object,
  consistency = NULL,
  ...,
  probs = c(0.025, 0.25, 0.5, 0.75, 0.975)
)

# S3 method for class 'nma_nodesplit'
summary(
  object,
  consistency = NULL,
  ...,
  probs = c(0.025, 0.25, 0.5, 0.75, 0.975)
)

# S3 method for class 'nma_nodesplit'
plot(x, consistency = NULL, ...)

# S3 method for class 'nma_nodesplit_df'
plot(x, consistency = NULL, ...)

Arguments

consistency

Optional, a stan_nma object for the corresponding fitted consistency model, to display the network estimates alongside the direct and indirect estimates. The fitted consistency model present in the nma_nodesplit_df object will be used if this is present (see get_nodesplits()).

...

Additional arguments passed on to other methods

probs

Numeric vector of specifying quantiles of interest, default c(0.025, 0.25, 0.5, 0.75, 0.975)

x, object

A nma_nodesplit or nma_nodesplit_df object

Value

A nodesplit_summary object

Details

The plot() method is a shortcut for plot(summary(nma_nodesplit)). For details of plotting options, see plot.nodesplit_summary().

Examples

# \donttest{
# Run smoking node-splitting example if not already available
if (!exists("smk_fit_RE_nodesplit")) example("example_smk_nodesplit", run.donttest = TRUE)
# }
# \donttest{
# Summarise the node-splitting results
summary(smk_fit_RE_nodesplit)
#> Node-splitting models fitted for 6 comparisons.
#> 
#> ------------------------------ Node-split Group counselling vs. No intervention ---- 
#> 
#>                  mean   sd  2.5%   25%   50%  75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net            1.11 0.44  0.26  0.81  1.10 1.40  2.00     1743     2166    1
#> d_dir            1.06 0.76 -0.33  0.56  1.03 1.54  2.68     3785     2905    1
#> d_ind            1.15 0.55  0.11  0.79  1.14 1.50  2.26     1746     1811    1
#> omega           -0.09 0.93 -1.86 -0.71 -0.12 0.51  1.79     2674     2542    1
#> tau              0.87 0.20  0.56  0.73  0.84 0.98  1.33     1007     1599    1
#> tau_consistency  0.84 0.18  0.56  0.71  0.81 0.95  1.27     1095     1647    1
#> 
#> Residual deviance: 54 (on 50 data points)
#>                pD: 44.2
#>               DIC: 98.2
#> 
#> Bayesian p-value: 0.9
#> 
#> ------------------------- Node-split Individual counselling vs. No intervention ---- 
#> 
#>                 mean   sd  2.5%   25%  50%  75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net           0.84 0.24  0.41  0.68 0.83 0.99  1.33     1083     1746 1.01
#> d_dir           0.88 0.25  0.40  0.72 0.87 1.04  1.40     1870     1924 1.00
#> d_ind           0.58 0.68 -0.72  0.14 0.55 1.00  2.00     1446     1973 1.00
#> omega           0.31 0.70 -1.11 -0.14 0.31 0.76  1.69     1436     2038 1.00
#> tau             0.86 0.20  0.55  0.72 0.83 0.97  1.30     1340     2197 1.00
#> tau_consistency 0.84 0.18  0.56  0.71 0.81 0.95  1.27     1095     1647 1.00
#> 
#> Residual deviance: 54.3 (on 50 data points)
#>                pD: 44.2
#>               DIC: 98.5
#> 
#> Bayesian p-value: 0.64
#> 
#> -------------------------------------- Node-split Self-help vs. No intervention ---- 
#> 
#>                  mean   sd  2.5%   25%   50%  75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net            0.49 0.39 -0.28  0.23  0.49 0.75  1.25     1805     2504    1
#> d_dir            0.34 0.54 -0.69  0.00  0.34 0.69  1.39     2465     2788    1
#> d_ind            0.71 0.62 -0.46  0.32  0.70 1.11  1.96     1694     2301    1
#> omega           -0.37 0.82 -2.01 -0.89 -0.35 0.18  1.18     1784     2226    1
#> tau              0.87 0.20  0.56  0.73  0.84 0.98  1.32     1051     1317    1
#> tau_consistency  0.84 0.18  0.56  0.71  0.81 0.95  1.27     1095     1647    1
#> 
#> Residual deviance: 54.2 (on 50 data points)
#>                pD: 44.5
#>               DIC: 98.7
#> 
#> Bayesian p-value: 0.66
#> 
#> ----------------------- Node-split Individual counselling vs. Group counselling ---- 
#> 
#>                  mean   sd  2.5%   25%   50%   75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net           -0.27 0.42 -1.08 -0.55 -0.27  0.00  0.55     2322     2465    1
#> d_dir           -0.11 0.48 -1.07 -0.42 -0.11  0.21  0.79     3184     2831    1
#> d_ind           -0.55 0.63 -1.83 -0.96 -0.54 -0.15  0.70     1304     1967    1
#> omega            0.44 0.70 -0.94 -0.01  0.42  0.89  1.81     1365     1712    1
#> tau              0.86 0.20  0.56  0.73  0.84  0.98  1.33     1239     1769    1
#> tau_consistency  0.84 0.18  0.56  0.71  0.81  0.95  1.27     1095     1647    1
#> 
#> Residual deviance: 53.7 (on 50 data points)
#>                pD: 44
#>               DIC: 97.7
#> 
#> Bayesian p-value: 0.51
#> 
#> ------------------------------------ Node-split Self-help vs. Group counselling ---- 
#> 
#>                  mean   sd  2.5%   25%   50%   75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net           -0.62 0.49 -1.59 -0.94 -0.62 -0.30  0.34     2557     2690 1.00
#> d_dir           -0.61 0.66 -1.91 -1.04 -0.60 -0.17  0.69     4162     3023 1.00
#> d_ind           -0.61 0.67 -1.98 -1.05 -0.59 -0.17  0.71     2183     2432 1.00
#> omega            0.00 0.90 -1.71 -0.61  0.00  0.57  1.87     2477     2004 1.00
#> tau              0.87 0.20  0.56  0.73  0.85  0.98  1.32     1171     1933 1.01
#> tau_consistency  0.84 0.18  0.56  0.71  0.81  0.95  1.27     1095     1647 1.00
#> 
#> Residual deviance: 54 (on 50 data points)
#>                pD: 44.2
#>               DIC: 98.2
#> 
#> Bayesian p-value: 1
#> 
#> ------------------------------- Node-split Self-help vs. Individual counselling ---- 
#> 
#>                  mean   sd  2.5%   25%   50%   75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net           -0.35 0.41 -1.18 -0.62 -0.35 -0.09  0.46     1993     2691    1
#> d_dir            0.07 0.66 -1.23 -0.36  0.07  0.48  1.38     3595     2923    1
#> d_ind           -0.63 0.51 -1.69 -0.97 -0.63 -0.28  0.34     2028     2480    1
#> omega            0.70 0.82 -0.91  0.15  0.71  1.23  2.30     2429     2427    1
#> tau              0.86 0.19  0.56  0.72  0.83  0.97  1.29     1121     2011    1
#> tau_consistency  0.84 0.18  0.56  0.71  0.81  0.95  1.27     1095     1647    1
#> 
#> Residual deviance: 54.1 (on 50 data points)
#>                pD: 44.5
#>               DIC: 98.6
#> 
#> Bayesian p-value: 0.39

# Plot the node-splitting results
plot(smk_fit_RE_nodesplit)

# }